A chunk of conductive graphene foam reinforced by carbon nanotubes can support more than 3,000 times its own weight and bounce back to its original height, according to Rice University scientists in Texas.

It can be made in almost any shape and size, they say, demonstrating a screw-shaped piece of the conductive foam.

Graphene foam invented at Rice University is reinforced with carbon nanotubes. Graphene foam invented at Rice University is reinforced with carbon nanotubes. The lab of chemist James Tour tested its “rebar graphene” as a highly porous, conductive electrode in lithium ion capacitors and found it to be mechanically and chemically stable.

The research appears in the American Chemical Society journal ACS Applied Materials and Interfaces.

Carbon in the form of atom-thin graphene is among the strongest materials known and is highly conductive; multiwalled carbon nanotubes are widely used as conductive reinforcements in metals, polymers and carbon matrix composites. The Tour lab had already used nanotubes to reinforce two-dimensional sheets of graphene. Extending the concept to macroscale materials made sense, Tour says.

The three-dimensional structures were created from a powdered nickel catalyst, surfactant-wrapped multiwall nanotubes and sugar as a carbon source. The materials were mixed and the water evaporated; the resulting pellets were pressed into a steel die and then heated in a chemical vapor deposition furnace, which turned the available carbon into graphene. After further processing to remove remnants of nickel, the result was an all-carbon foam in the shape of the die, in this case a screw. Tour said the method will be easy to scale up.

Electron microscope images of the foam showed partially unzipped outer layers of the nanotubes had bonded to the graphene, which accounted for its strength and resilience. Graphene foam produced without the rebar could support only about 150 times its own weight while retaining the ability to rapidly return to its full height. But rebar graphene irreversibly deformed by about 25% when loaded with more than 8,500 times its weight.

To contact the author of this article, email engineering360editors@globalspec.com