Building and Construction

World’s Tiniest Interlinking Chains Developed

07 December 2017

Scientists discovered a way to manufacture tiny interlocking chains (right, with chemical formulas at left) with loops each just a nanometer across. Source: Peter Alan/University of ChicagoScientists discovered a way to manufacture tiny interlocking chains (right, with chemical formulas at left) with loops each just a nanometer across. Source: Peter Alan/University of Chicago

For decades, scientists have been trying to create a true molecular chain. A molecular chain is a repeated set of tiny rings interlocked together. University of Chicago researchers have managed to develop a method to create the first tiny molecular chain.

Many molecules that are “linked” are joined by fixed covalent bonds, not two freely moving interlocked rings. The distinction makes a big difference when it comes to how the chain moves.

"Think about dangling a silver chain onto your palm: It collapses easily into a flat pool and can flow off your hand, much different from a string of fixed beads," said Stuart Rowan, a professor at UChicago's Institute for Molecular Engineering and Department of Chemistry and lead author on the paper.

The longer interlocked chains could make materials or machines with intriguing properties, according to the researchers. Polymers are extremely useful in everyday life, making up everything from plastics to proteins; and this new way to combine the repeat units could open new avenues in engineering.

"A metal rod is rigid, but a metal chain made of the same material is very flexible," said UChicago postdoctoral researcher Qiong Wu, the first author on the paper. "By keeping the same chemical composition but changing the architecture, you can dramatically change the material's behavior."

Previous techniques have only been able to link, at most, seven rings together. Instead of trying to combine sets of two or three loops into a larger chain, the new method combines a number of closed rings and open loops. They added a metal ion that held the loops and rings together, performed a reaction to close the open loops and then removed the metal to reveal a set of interlocked loops all at once that were two dozen or more loops long.

Because the loops are so tiny — each loop is about a nanometer in diameter and less than 100 atoms across — the team spent a lot of time proving the chain really had freely rotating loops. But a combination of experimental and computational techniques convinced the researchers they were real.

It has been theorized that these chains should absorb energy well — a useful property for dampening sound or absorbing vibrations. It should use less energy to collapse into smaller configurations since it takes less energy to move a ring than to manipulate covalent bonds. It’s even possible the chains could be built to expand and contract like an accordion based on a stimulus. These are interesting abilities for tiny machines.

"This is really a new polymer architecture, which could offer you all the benefits of polymers — such as powerful functionality and tenability — plus the ability to coordinate and engineer their motion at the very small scale," said graduate student Phil Rauscher, also a coauthor.

"We're very excited to explore their properties now that we know how to make them," Rowan said.

The paper on this research was published in Science

To contact the author of this article, email Siobhan.Treacy@ieeeglobalspec.com


Powered by CR4, the Engineering Community

Discussion – 0 comments

By posting a comment you confirm that you have read and accept our Posting Rules and Terms of Use.
Engineering Newsletter Signup
Get the Engineering360
Stay up to date on:
Our flagship newsletter covers all the technologies engineers need for new product development across disciplines and industries.
Advertisement
Advertisement

Upcoming Events

Advertisement