Environmental, Health and Safety

In a Natural Disaster, Fog Computing May Be Essential

14 September 2017

Researchers at the Georgia Institute of Technology are proposing a way of gathering and sharing information during natural disasters that does not rely on the internet.

Using computing power built into mobile phones, routers, and other hardware to create a network, emergency managers and first responders would be able to share and act on information gathered from people impacted by hurricanes, tornadoes, floods, and other disasters.

Fog computing could help first responders after a natural disaster.Fog computing could help first responders after a natural disaster.“Increasingly, data gathered from passive and active sensors that people carry with them, such as their mobile phones, is being used to inform situational awareness in a variety of settings,” said Kishore Ramachandran, computer science professor at Georgia Tech. “In this way, humans are providing beneficial social sensing services. However, current social sensing services depend on internet connectivity since the services are deployed on central cloud platforms.”

In a paper presented earlier this year at the 2nd International Workshop on Social Sensing, the Georgia Tech research team detailed how it may be possible to access these centralized services using a decentralized network that leverages the growing amount of computing power at the “edge” of the internet.

In a flooded area, for example, search and rescue personnel using a geo-distributed network would be able to continuously ping enabled phones, sensors and other devices in an area to determine their exact locations. The data is used to create density maps of people in that search region. These maps are then used to prioritize and guide emergency response teams.

The Georgia Tech proposal takes advantages of edge computing. Also known as fog computing, edge computing places more processing capabilities in sensing devices – like surveillance cameras, embedded pavement sensors, and others, as well as in consumer devices like cell phones, readers, and tablets – in order to improve network latency between sensors, apps, and users.

Rather than just being able to communicate through the internet with central cloud platforms, the Georgia Tech team demonstrated that by harnessing edge computing resources, sensing devices can be enabled to identify and communicate with other sensors in an area.

“We believe fog computing can become a potent enabler of decentralized, local social sensing services that can operate when internet connectivity is constrained,” said Ramachandran. “This capability will provide first responders and others with the level of situational awareness they need to make effective decisions in emergency situations.”

The team has proposed a generic software architecture for social sensing applications that is capable of exploiting the fog-enabled devices. The design has three components: a central management function that resides in the cloud, a data processing element placed in the fog infrastructure, and a sensing component on the user’s device.

The researchers say that it is not enough to simply run a centralized social sensing service on a number of parallel fog nodes.

“Rather, the social sensing service has to become a distributed service capable of discovering available fog nodes and building a network that aggregates and shares information between social sensors that are connected to different fog nodes,” said computer science Ph.D. student Harshit Gupta.

Beyond emergency response during natural disasters, the team believes its proposed fog architecture can also benefit communities with limited or no internet access. These include applications for public transportation management, job recruitment and housing.

To contact the author of this article, email david.wagman@ieeeglobalspec.com


Powered by CR4, the Engineering Community

Discussion – 0 comments

By posting a comment you confirm that you have read and accept our Posting Rules and Terms of Use.
Engineering Newsletter Signup
Get the Engineering360
Stay up to date on:
Our flagship newsletter covers all the technologies engineers need for new product development across disciplines and industries.
Advertisement
Advertisement

Upcoming Events

Advertisement